

Преобразователи измерительные Е8 Модификация Е849

Преобразователи измерительные мощности переменного тока

Руководство по эксплуатации

УИМЯ.411600.089.49 РЭ

1 НАЗНАЧЕНИЕ

- 1.1 Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы, устройством, монтажом и обслуживанием преобразователей измерительных E8 модификации E849 (в дальнейшем ИП).
- 1.2 ИП предназначены для линейного преобразования активной и реактивной мощности переменного тока в унифицированный выходной сигнал постоянного тока, напряжения постоянного тока, в цифровой код для передачи его по интерфейсу RS-485. Наличие соответствующих функций определяется заказом.
- 1.3 ИП могут применяться для контроля активной и реактивной мощности электрических систем и установок, для комплексной автоматизации объектов электроэнергетики, АСУ ТП энергоемких объектов различных отраслей промышленности.
 - 1.4 Рабочие условия применения
- 1.4.1 ИП изготавливаются для эксплуатации в условиях умеренно-холодного климата (климатическое исполнение УХЛЗ.1 по ГОСТ 15150-69). По устойчивости к климатическим воздействиям ИП относятся к группе С4 по ГОСТ 12997-84, группе 4 по ГОСТ 22261-91, при этом диапазон рабочих температур составляет от минус 40 °C до плюс 55 °C и относительной влажности воздуха не более 95 % при температуре плюс 35 °C.
- 1.4.2 По защищенности от воздействия окружающей среды ИП относятся к защищенным от попадания внутрь пыли, степень защиты IP20 по ГОСТ 14254-2015.
- 1.4.3 По устойчивости к механическим воздействиям относятся к виброустойчивым и вибропрочным (группа N1 ГОСТ 12997-84), резонансные частоты в рабочем диапазоне отсутствуют.
- 1.4.4 ИП являются устойчивыми к воздействию атмосферного давления и относятся к группе Р1 по ГОСТ 12997-84.
- 1.4.5 По степени защиты от поражения электрическим током ИП соответствуют классу защиты II по ГОСТ 12.2.007.0-75, категории перенапряжения II, степень загрязнения 2 по ГОСТ IEC 61010-1-2014, категории измерений III по ГОСТ IEC 61010-2-030-2013.
 - 1.4.6 Питание ИП осуществляется или от внешнего источника, или от измерительной цепи.
- 1.5 ИП изготавливаются в 20-контактных корпусах малых (Е20). Подробное описание корпусов согласно п. 2.17.
- 1.6 По связи между входными и выходными цепями ИП относятся к преобразователям без гальванической связи. ИП обеспечивают гальваническое разделение между корпусом и цепями входов, выходов, питания.
- 1.7 ИП предназначены для включения как непосредственно, так и через измерительные трансформаторы тока (далее TT), измерительные трансформаторы напряжения (далее TH).
 - 1.8 ИП изготавливаются для включения в цепи с рабочим напряжением до 500 V.
 - 1.9 ИП выполняются в пластмассовых корпусах, предназначенных для навесного монтажа на щитах и панелях с передним присоединением монтажных проводов и для установки на DIN-35. Крепление на DIN-рейку заказывается отдельно.
- 1.10 В зависимости от исполнения ИП отличаются диапазоном преобразуемой величины, наличием и типом аналоговых выходов, наличием порта RS-485.

					УИМЯ.411600.089.49 РЭ			
Изм.	Лист	№ докум.	Подпись	Дата				
Разра	аб.	Власенко			Преобразователи измерительные E8 Модификация E849 Преобразователи измерительные		Листов	
Пров.		Жарков					2	18
Н. контр.		Бабора			мощности переменного тока	энерго (союз		
Утв.					Руководство по эксплуатации			

2 ТЕХНИЧЕСКИЕ ДАННЫЕ 2.1 Основные технические данные ИП Е849 в соответствии с кодом условного обозначения (рис. 1). F849 E20 E20 — тип корпуса. Питание 220AC/DC — питание ~/= 220 V*; 220AC — питание ~220 V*; 24DC — питание =24 V; IC — питание от измерительной цепи. **Обратите внимание**, что диапазон входного сигнала по напряжению в таком случае может быть только от 80 %· Uном до 120 %· Uном, например, 80...120V, 176...264V; *возможно исполнение на любой номинал от 100 до 240 V, в коде указывается значение, например, 230AC/DC; 100AC. Телесигнализация, телеуправление. **х** — отсутствуют. Порт USB, часы реального времени (RTC). отсутствуют. Интерфейс RS-485. **х** — отсутствует; **R1** — один порт RS-485. Выходной аналоговый сигнал*. х — аналоговые выходы отсутствуют; 33 — 4...12...20 mA (2 выхода); **11** — 0...5 mA (2 выхода); **22**—4...20 mA (2 выхода); **44** — 0...2,5...5 mA (2 выхода); **55** — -5...0...5 mA (2 выхода); **66** — 0...20 mA (2 выхода); **77** — 0...10...20 mA (2 выхода); 88 — 0...5 V (2 выхода); 99 — 0...10 V (2 выхода); **BB** — -10...0...10 V (2 выхода); **АА** — -5...0...5 V (2 выхода); *при наличии аналоговых выходов необходимо указать два символа, где первый код соответствует выходу Р. второй – выходу Q. Возможно исполнение с различными выходами, в таком случаем указываются различные коды. Входной сигнал по напряжению. Указывается номинальное* линейное значение напряжения переменного тока (диапазон измерений 0...1,2. Uном**): 100V — 0...120 V; 380V — 0...456 V; 80...120V — 80...120 V**; **220V** — 0...264 V; **400V** — 0...480 V; 176...264V — 176...264 V**. *возможно исполнение на любой номинал от 50 до 400 V, шаг 1 V; **возможно исполнение с диапазоном измерений от 80 %·Uном до 120 %·Uном, в таком случае в коде указывается и нижнее, и верхнее значение, как в примере. Входной сигнал по току. Указывается номинальное* значение переменного тока: **1A**—0...1 A; **3A**—0...3 A; **2A**—0...2 A; **5A**—0...5 A; **1A(0,5A)** — 0...1 A (0...0,5 A)**; **5A(2,5A)** — 0...5 A (0...2,5 A)**. *возможно исполнение на любой номинал от 0,05 до 10,00 А, шаг 0,05 А. **возможно изготовление приборов с дополнительным полупределом, который указывается в скобках, например **5A(2,5A).** Преобразователь измерительный активной и реактивной мощности переменного тока Е849. Рисунок 1 – Схема условного обозначения ИП В коде допускается пропускать символ «х», обозначающий отсутствие какого-либо параметра. Дополнительные опции указываются после кода, через запятые: корпус ИП, крепление на DIN-рейку, коэффициент трансформации по току и(или) напряжению. Примеры кодов условного обозначения измерительного преобразователя мощности переменного тока Е849, имеющего следующие характеристики: а) номинальное значение входного сигнала переменного тока 5 А, номинальное значение напряжения переменного тока 100 V, два аналоговых выхода 4 – 20 mA, питание прибора от сети ~220 V, корпус прибора E20: E849 5A/100V-22-x-x-x-220AC, KODITYC E20 TY BY 300521831.018-2021 б) номинальное значение входного сигнала переменного тока 5 А, напряжения переменного тока

100 V, коэффициент трансформации KTT = 100/5, два аналоговых выхода 0 - 2.5 - 5 mA, один порт RS-485, питание прибора универсальное ~/=220 V, корпус прибора E20 с крепление на DIN-рейку: E849 5A/100V-44-R1-220AC/DC, kopnyc E20, DIN-35, KTT = 100/5TY BY 300521831.018-2021

Изм.	Лист	№ докум.	Подпись	Дата

- 2.2 Пределы допускаемой основной приведенной погрешности ИП равны:
- ± 0,5 % от нормирующего значения во всем диапазоне изменения сопротивления нагрузки и рабочей области частот для выходного аналогового сигнала.
 - ± 0,5 % от нормирующего значения для выходного цифрового сигнала.

Основную погрешность на аналоговом выходе рассчитывать по формуле 1.

$$\gamma = \frac{A_{\text{вых.o}} - A_{\text{вых.pacч}}}{A_{\text{норм}}} \cdot 100 \% \tag{1}$$

где $A_{\scriptscriptstyle \mathrm{BbIX.O}}$ – действительное значение выходного сигнала, определяемое по эталону единиц величин, mA (V);

 $A_{\text{вых.расч}}$ – расчетное значение выходного сигнала проверяемой точки сигнала, mA (V) согласно формуле 2;

 $A_{\rm норм}$ – нормирующее значение выходного сигнала, равное номинальному значению выходного сигнала, mA (V). Номинальное значение выходного аналогового сигнала равно верхнему значению диапазона изменений выходного аналогового сигнала (таблица 3);

$$A_{\text{Bыx.pacч}} = A_{\text{Bыx.min}} + (A_{\text{Bx.o}} - A_{\text{Bx.min}}) \cdot \frac{(A_{\text{Bыx.max}} - A_{\text{Bыx.min}})}{(A_{\text{Bx.max}} - A_{\text{Bx.min}})}$$
(2)

где $A_{\scriptscriptstyle \mathrm{BX.O}}$ – действительное значение входного сигнала, установленное по эталону единицы величины, W (var);

 $A_{\text{BX.Min}}$ – нижнее значение диапазона измерений входного сигнала, W (var);

А_{вх.мах} – верхнее значение диапазона измерений входного сигнала, W (var);

 $A_{\text{вых,min}}$ – нижнее значение диапазона изменений выходного сигнала, mA (V);

 $A_{\text{вых,max}}$ – верхнее значение диапазона изменений выходного сигнала, mA (V).

Основную погрешность на цифровом выходе рассчитывать по формуле 3.

$$\gamma = \frac{A_{\text{изм}} - A_{\text{вых.расч}}}{A_{\text{норм}}} \cdot 100 \% \tag{3}$$

где $A_{\mbox{\tiny ИЗМ}}$ – измеренное значение, отображаемое на мониторе ПЭВМ, ед.;

 $A_{\text{вых,расч}}$ – расчетное значение выходного сигнала проверяемой точки, ед. согласно формуле 4;

А_{норм} – нормирующее значение выходного сигнала, 5000 ед.

$$A_{\text{вых.расч}} = A_{\text{вх.о}} \cdot \frac{A_{\text{норм}}}{A_{\text{вх.ном}}} \tag{4}$$

где $A_{\scriptscriptstyle BX.O}$ – действительное значение входного сигнала, установленное по эталону единицы величины, W (var);

 $A_{\text{вх.ном}}$ – номинальное значение входного сигнала, W (var);

А_{норм} – нормирующее значение выходного сигнала, 5000 ед.

2.3 Пределы допускаемых дополнительных погрешностей ИП, вызванных отклонением влияющих факторов от нормальных значений, приведены в таблице 1.

Таблица 1

Влияющая величина	Пределы допускаемой дополнительной приведенной погрешности ИП (удоп), не более
Изменение температуры окружающего воздуха от нормальной до лю-	
бой температуры в пределах от минус 40 °C до 55 °C на каждые 10 °C	0,8γ
Одновременное воздействие повышенной влажности 95 % и темпера-	
туры 35 °C	1,8γ

Продолжение таблицы 1

Изм.	Лист	№ докум.	Подпись	Дата

УИМЯ.411600.089.49 РЭ

Влияющая величина	Пределы допускаемой дополнительной приведенной погрешности ИП ($\gamma_{\text{ДОП}}$), не более
Влияние внешнего однородного переменного магнитного поля с маг-	
нитной индукцией 0,5 mT при самом неблагоприятном направлении и	
фазе магнитного поля	γ
Изменение напряжения питания, от внешнего источника, от номиналь-	
ного до максимального и минимального значений	0,5γ
Отклонение формы кривой входного сигнала от синусоидальной под	
влиянием третьей, четвертой, или пятой гармоники, равной 20 % от	
первой гармоники	0,5γ
Влияние неравномерной нагрузки фаз (при измерении мощности), ток	
в любом из линейных проводов отличается от среднего значения:	
- не более чем на 10 %	0,5γ
- более чем на 10 %, но не более чем на 50 %	γ

Примечание: γ – пределы допускаемой основной приведенной погрешности ИП для соответствующего выхода.

2.4 Основные технические данные приведены в таблице 2.

Таблица 2

Характеристика	Значение
Схема подключения входного сигнала по току	2-элементная (la, lc)
Диапазон изменений преобразуемого входного сигнала по току	
- в рабочем режиме	0 — Іном
- в режиме перегрузки	Іном — 1,5·Іном
Номинальное значение диапазона изменений преобразуемого	одно значение из диапазона
входного сигнала по току, Іном	от 0,05 до 10,00 А (шаг 0,05 А)
Схема подключения входного сигнала по напряжению	3-проводная (Ua, Ub, Uc)
Диапазон изменений преобразуемого входного сигнала по	
напряжению	
- при питании от измерительной цепи	0,8∙Uном – 1,2∙Uном
- при питании от внешнего источника по умолчанию	0 − 1,2·Uном
- при питании от внешнего источника индивидуально	$X_1 - 1, 2 \cdot U + OM (X_1 \le 0, 8 \cdot U + OM)$
Номинальное значение диапазона изменений преобразуемого	
входного сигнала напряжения (линейного), Uном	одно значение из диапазона (шаг 1 V)
- при питании от измерительной цепи	от 90 до 400 V
- при питании от внешнего источника	от 50 до 400 V
Диапазон изменений угла фазового сдвига между током и	
напряжением	0 - 360°
Номинальное значение диапазона измерений преобразуемого	
входного сигнала активной (Рном) и реактивной (Qном) мощно-	_
сти переменного тока	$\sqrt{3}$ ·Iном·Uном
Количество выходных сигналов	
- аналоговых выходов	0 или 2
- цифровых интерфейсов RS-485	0 или 1
Диапазон изменений выходного аналогового сигнала	Согласно п. 2.4
Температура окружающего воздуха, °С	
- при нормальных условиях	15 – 25
- в рабочих условиях	-40 – +55

Изм.	Лист	№ докум.	Подпись	Дата

Продолжение таблицы 2

Характеристика	Значение
Относительная влажность окружающего воздуха, %	
- при нормальных условиях	30 – 80
- в рабочих условиях	до 95 при 35 °C
Частота входного сигнала, Hz	
- рабочая область	45 – 65
Сопротивление нагрузки, в зависимости от верхнего значения	
выходного сигнала, kΩ	
- 5 mA	0 - 3,0
- 20 mA	0 - 0.5
- 5 V	1 – 100
- 10 V	2 – 100

2.5 Диапазоны изменений выходного сигнала и диапазоны изменений коэффициента мощности входного сигнала указаны в таблице 3.

Таблица 3

Выход	Диапазон изменений	Диапазон изменений коэффициента мощности входного сигнала		
	один из 0 – 5 mA; 4 – 20 mA; 0 – 20 mA; 0 – 5 V; 0 – 10 V	010		
Аналоговый выход	один из -5 – 0 – 5 mA; 0 – 2,5 – 5 mA; 4 – 12 – 20 mA; 0 – 10 – 20 mA -5 – 0 – 5 V; -10 – 0 – 10 V	01010		
Цифровой выход	-5000 — 0 — 5000 ед.	01010		

2.6 Питание приборов должно осуществляться от одного из следующих источников согласно таблице 4.

Таблица 4 – Питание ИП

ИΠ	Питание
E849	От внешнего источника: - универсальное питание AC/DC – напряжения переменного (частотой 50, 60 Hz) тока от 85 до 264 V или напряжения постоянного тока от 100 V до 300 V (номинальное значение в диапазоне от 100 до 240 V); - напряжения переменного тока AC (частотой 50, 60 Hz), номинальное значение в диапазоне от 100 до 240 V, предельное отклонение напряжения питания от номинального значения ± 10 %; - напряжения постоянного тока 24DC от 18 до 36 V номинальным значением 24 V От измерительной цепи IC

- 2.7 Время установления рабочего режима (предварительный прогрев) не более 30 min. По истечении времени установления рабочего режима ИП должны соответствуют требованиям п. 2.2 независимо от продолжительности работы.
 - 2.8 Пульсация выходного сигнала в нормальных условиях применения:
 - 75 mV для ИП с нормирующим значением выходного сигнала 5 mA, 5 V, 10 V;
 - 50 mV для ИП с нормирующим значением выходного сигнала 20 mA.
- 2.9 ИП выдерживают кратковременные перегрузки в соответствии с таблицей 5. Выходной сигнал при всех перегрузках не должен превышать 30 V при максимальной нагрузке.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 5

ИП	Кратность	Кратность	Число	Длительность	Интервал между двумя
VIII	тока	напряжения	перегрузок	каждой перегрузки, s	перегрузками, ѕ
	2	-	10	10	10
	7	-	2	15	60
E849	10	-	5	3	2,5
	20	-	2	0,5	0,5
	-	1,5	9	0,5	15

- 2.10 Время установления выходного сигнала ИП при скачкообразном изменении входного сигнала от начального до любого значения внутри диапазона измерения не превышает 500 ms.
- 2.11 ИП выдерживают без повреждений длительный разрыв цепи нагрузки. Значение выходного напряжение при разрыве цепи нагрузки не более 30 V.
 - 2.12 При заземлении любого выходного зажима ИП соответствуют требованию п. 2.2.
- 2.13 ИП являются ударопрочными при воздействии механических ударов многократного действия с параметрами:
 - число ударов в минуту от 10 до 50;
 - максимальное ускорение 100 m/s²;
 - длительность импульса 16 ms;
 - число ударов по каждому направлению 1000.
- 2.14 ИП по устойчивости к механическим воздействиям виброустойчивые и вибропрочные, группа N1 по ГОСТ 12997-84, т.е. ИП должны быть устойчивы и прочны к воздействию синусоидальной вибрации в диапазоне частот от 10 до 55 Hz при амплитуде смещения 0,15 mm.
 - 2.15 ИП в транспортной таре выдерживают без повреждений:
 - а) воздействие температуры от минус 50 °C до плюс 70 °C;
 - б) воздействие относительной влажности 95 % при температуре 35 °C;
- в) в направлении, обозначенном на таре манипуляционным знаком по ГОСТ 14192-96 «Верх», воздействие синусоидальной вибрации в диапазоне частот от 10 до 55 Hz при амплитуде смещения 0,35 mm.
 - 2.16 Мощность, потребляемая ИП, не более значений, указанных в таблице 6.

Таблица 6

Мощность, потребляемая ИП, не более					
от цепей Ua, Uc		от цепи Ub	от цепей Іа, Іс	от цепи питания	
при питании от	при питании от				
внешнего источника	измерительной цепи	0,2 V·A	0,2 V·A	6,0 V·A	
0,2 V·A	6,0 V·A				

2.17 Габаритные и установочные размеры приведены в приложении А. Расположение контактов на корпусе согласно приложению Б.

В зависимости от питания ИП изготавливаются в корпусах согласно таблице 7.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 7 – Корпуса ИП

Корпус	Код	Рисунок	AO ⁽¹⁾	RS ⁽²⁾	Питание прибора	Схема подключения
20-контактный с нижним	E20	E20	2	-	220AC ⁽³⁾	
расположе- нием			-	1	220AC(³) 1C(⁴) 24DC	Рис. Б.1
контактов малый			2	1	2400	

Примечания:

- 1. АО количество аналоговых выходов;
- 2. RS количество интерфейсов RS-485 (протокол обмена Modbus RTU);
- 3. Номинальное значение напряжения питания может быть в диапазоне от 100 до 240 V.
- 4. При питании от измерительной цепи диапазон входного сигнала по напряжению может быть только от 80 %·Uhom до 120 %·Uhom, например: 80 120 V, 176 264 V.
 - 2.18 Macca ИП не более 1,2 kg.
 - 2.19 Средний срок службы не менее 30 лет.
- 2.20 Зажимы клеммной колодки обеспечивают подключение медных или алюминиевых проводов сечением от 0,5 до 7,0 mm².
 - 2.21 Электрическое сопротивление изоляции не менее $20~\text{M}\Omega$.
- 2.22 ИП выдерживают испытательное напряжение переменного тока, прикладываемое между цепями (контакты каждой цепи предварительно закоротить между собой), указанными в таблице 8, повышая равномерно с 0 V до указанного значения в течении 5 секунд и удерживают это значение в течение 1 минуты.

Таблица 8

Таолица о						
_	Испытательное напряжение в зависимости от номинального напря-					
Проверяемые цепи	жения г	ıеременного тока (фазн	ого), kV			
	50 – 100 V	101 – 250 V	251 – 400 V			
Корпус – входы	1,39	2,21	3,51			
Корпус – выходы	0,86	0,86	0,86			
Корпус – питание АС, АС/DC	3,00	3,00	3,00			
Корпус – питание DC	0,86	0,86	0,86			
Входы между собой	1,39	2,21	3,31			
Входы – выходы	1,35	1,50	2,21			
Входы – питание АС, АС/DC	2,21	2,21	3,31			
Входы – питание DC	1,35	1,50	2,21			
Выходы – питание AC, AC/DC	1,50	1,50	1,50			
Выходы – питание DC	0,86	0,86	0,86			
Выходы между собой	0,86	0,86	0,86			

3 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

3.1 Маркировка ИП должна соответствовать требованиям ГОСТ 24855-81, ГОСТ IEC 61010-1-2014, ТР TC 004/2011. ТР TC 020/2011.

Содержание маркировки, место и способ нанесения соответствуют конструкторской документации. На табличке, прикрепленной к ИП, должны нанесены:

- модификация ИП, исполнение;
- диапазоны входных сигналов;
- обозначение единиц входных и выходных сигналов;

L							Лист
						УИМЯ.411600.089.49 РЭ	0
	Изм.	Лист	№ докум.	Подпись	Дата		0

- диапазон изменения сопротивления нагрузки;
- диапазон частот входного сигнала;
- порядковый номер по системе нумерации изготовителя;
- функциональное назначение контактов;
- обозначение полярности зажимов;
- знак Государственного реестра Республики Беларусь;
- единый знак обращения продукции на рынке государств-членов Евразийского экономического союза:
 - наименование и(или) товарный знак изготовителя;
- символ оборудования, защищенного двойной или усиленной изоляцией (символ 014 по ГОСТ 25874-83);
 - символ F-33 по ГОСТ 30012.1-2002 "Внимание!";
 - надпись: "Сделано в Беларуси".
- 3.2 Надписи и символы, расположенные на табличках и на внешних поверхностях ИП, должны быть четкими, разборчивыми и нестираемыми.

4 РАЗМЕЩЕНИЕ И МОНТАЖ

4.1 До введения в эксплуатацию ИП должен быть поверен в соответствии с методикой поверки MPБ МП.3093-2021.

Межповерочный интервал – не более 12 месяцев при использовании в сфере законодательной метрологии Республики Беларусь.

Рекомендуемый межповерочный интервал – не более 96 месяцев при использовании вне сферы законодательной метрологии Республики Беларусь.

- 4.2 Разметка места крепления должна производиться в соответствии с установочными размерами, приведенными в приложении А.
 - 4.3 Перед установкой ИП на объекте необходимо:
 - открыть крышки клеммной колодки, закрывающие зажимы подключения внешних цепей;
- установить ИП на рабочее место на DIN-рейки или закрепить с помощью двух винтов, положив под каждый винт плоскую и пружинную шайбы.
 - 4.4 Внешние соединения следует выполнять в соответствии со схемой подключения (приложение Б).
- 4.5 Все работы по монтажу и эксплуатации должны производиться с соблюдением действующих правил, обеспечивающих безопасное обслуживание и эксплуатацию электроустановок.
 - 4.6 После окончания монтажа, перед включением ИП в измерительную цепь, необходимо:
 - а) проверить соответствие параметров измеряемой цепи входным параметрам ИП;
 - б) установить крышки клеммной колодки.
 - 4.7 При включении ИП необходимо соблюдать последовательность действий:
 - подключить к ИП нагрузку;
 - подключить на вход источник входного сигнала.
- 4.8 За безопасность любой системы, в состав которой входит ИП, несет ответственность специалист, монтирующий систему.

5 МЕРЫ БЕЗОПАСНОСТИ

- 5.1 Персонал, допущенный к работе с ИП, должен быть ознакомлен с ТКП 181-2009 «Правилами технической эксплуатации электроустановок потребителей», утвержденными Госэнергонадзором и с правилами безопасности при работе с установками до 1000 V.
 - 5.2 Запрещается:
- а) эксплуатировать ИП в условиях и режимах, отличающихся от указанных в разделах 1-2 настоящего руководства по эксплуатации;

						Лист
					УИМЯ.411600.089.49 РЭ	0
Изм.	Лист	№ докум.	Подпись	Дата		9

- б) снимать и открывать крышку клеммной колодки без предварительного прохождения инструктажа по электробезопасности и получения письменного разрешения для проведения регламентных работ;
- в) эксплуатировать ИП со снятой крышкой клеммной колодки, защищающей от случайного прикосновения к зажимам подключения цепей с опасным напряжением;
 - г) производить внешние присоединения, не отключив входной сигнал и питание;
 - д) эксплуатировать ИП при обрывах проводов внешнего присоединения.
 - 5.3 Опасный фактор входной сигнал, напряжение питания.

Меры защиты от опасного фактора – проверка сопротивления изоляции.

- В случае возникновения аварийных условий и режимов работы, ИП необходимо немедленно отключить.
- 5.4 Противопожарная защита в помещениях, где эксплуатируются преобразователи, должна достигаться:
 - а) применением автоматических установок пожарной сигнализации;
 - б) применением средств пожаротушения;
 - в) организацией своевременного оповещения и эвакуации людей.

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Эксплуатационный надзор за работой ИП производится лицами, за которыми закреплено данное оборудование.

6.1 Планово-предупредительный осмотр

Планово-предупредительный осмотр (ППО) производят в сроки, предусмотренные соответствующей инструкцией потребителя.

Порядок ППО:

- отключить все напряжения и токи ИП;
- произвести наружный осмотр ИП, сухой ветошью удалить с корпуса грязь и влагу;
- открыть крышки клеммных колодок, убедиться в отсутствии механических повреждений, проверить затяжку зажимов и состояние крепления;
 - закрыть крышки клеммных колодок;
 - подать напряжение питания и входной сигнал.

7 ХРАНЕНИЕ

- 7.1 Хранить ИП до введения в эксплуатацию следует на складах в упаковке изготовителя при температуре окружающего воздуха от 0 °C до 40 °C и относительной влажности воздуха 80 % при 35 °C.
- 7.2 Хранить приборы без упаковки следует при температуре окружающего воздуха от 10 °C до 35 °C и относительной влажности воздуха 80 % при 25 °C.
- 7.3 В помещении для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержание коррозионноактивных агентов для атмосферы типа 1 по ГОСТ 15150-69.

8 ТРАНСПОРТИРОВАНИЕ

- 8.1 Транспортирование ИП должно осуществляться в закрытых транспортных средствах любого вида при температуре от минус 50 °C до плюс 70 °C и относительной влажности до 95 % при 35 °C.
- 8.2 Транспортирование преобразователей должно производиться в соответствии с действующими на данном виде транспорта правилами, утвержденными в установленном порядке.
- 8.3 Условия транспортирования преобразователей должны соответствовать условиям хранения 5 (ОЖ4) по ГОСТ 15150-69.

Изм.	Лист	№ докум.	Подпись	Дата

- 8.4 При необходимости особых условий транспортирования, условия должны оговариваться в договоре на поставку.
- 8.5 Транспортирование и хранение производится с соблюдением норм и правил пожарной безопасности, при этом помещения для хранения приборов должны быть оборудованы автоматическими установками пожарной сигнализации и средствами пожаротушения.

9 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 9.1 Изготовитель гарантирует соответствие приборов требованиям технических условий при соблюдении условий эксплуатации, хранения и транспортирования.
- 9.2 На преобразователи измерительные Е8 предоставляется гарантия 96 месяцев с даты изготовления.

10 АДРЕС ИЗГОТОВИТЕЛЯ

OOO «Энерго-Союз» Республика Беларусь 210601, г. Витебск, ул. С. Панковой, 3 тел./факс +375(212) 67-75-80 E-mail: energo@ens.by www.ens.by

Изм.	Лист	№ докум.	Подпись	Дата

ПРИЛОЖЕНИЕ А

(справочное)

Габаритные и установочные размеры

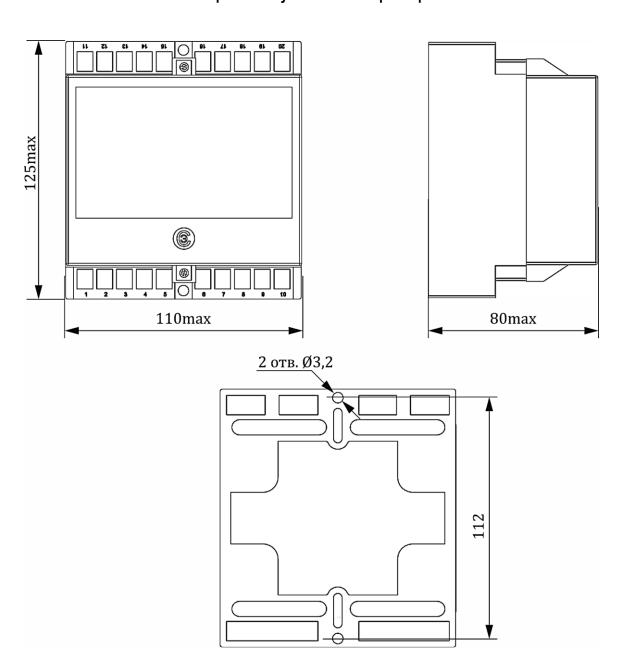
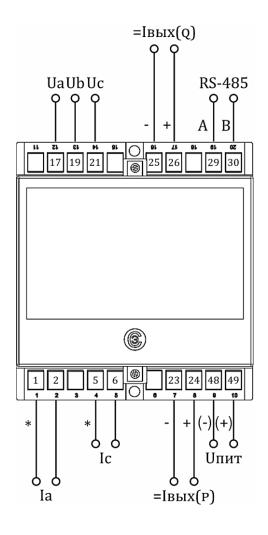
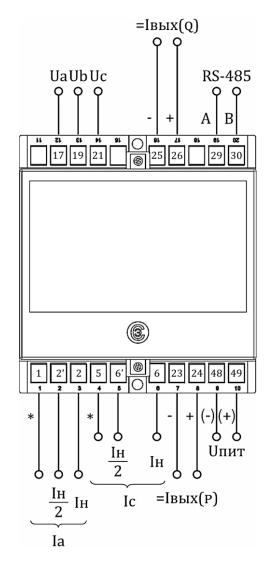


Рисунок А.1 – Габаритные и установочные размеры корпуса Е20


Изм.	Лист	№ докум.	Подпись	Дата


ПРИЛОЖЕНИЕ Б

(справочное)

Схемы электрические подключения

Ниже представлена схема подключения преобразователя E849 с максимальным количеством возможных цепей. В зависимости от исполнения некоторые цепи могут отсутствовать.

а) ИП без полупредела

а) ИП с дополнительным полупределом

Примечания:

- 1. При питании от измерительной цепи контакты Uпит (48, 49) отсутствуют. Знаки (-), (+) указаны для исполнения ИП с питанием от внешнего источника напряжения постоянного тока.
 - 2. При отсутствии аналоговых выходов контакты 23, 24 и 26, 26 отсутствуют.
 - 3. При отсутствии порта RS-485 контакты 29, 30 отсутствуют.

Рисунок Б.1 – Схемы электрические подключения ИП

Изм.	Лист	№ докум.	Подпись	Дата

ПРИЛОЖЕНИЕ В

(справочное)

Описание протокола обмена данными

В приборе реализован протокол обмена данными MODBUS, режим RTU.

Формат посылки – 8 бит без контроля четности.

Скорость обмена -1200, 2400, 4800, 9600, 19200, 28800, 38400, 57600, 115200 бод (выбирается потребителем).

Сетевой номер прибора задается потребителем в диапазоне от 1 до 255.

При выпуске из производства установлена скорость 9600 бод, сетевой номер 255, если иное не оговорено при заказе.

Функции MODBUS, поддерживаемые данным прибором:

Функция 3 — чтение регистров настроек (4х — банк);

Функция 4 - чтение входных регистров (3x -банк);

Функция 6 – установка единичного регистра настроек (4х – банк).

Данный протокол реализован в серии щитовых измерительных преобразователей. Однако следует учитывать тот факт, что ИП E849 не имеет индикатора. Все настройки индикации принимаются прибором, но не учитываются.

Функция 3 предназначена для определения установок (настроек) для данного прибора. Формат запроса для функции 3:

	SLAVE	03	START	LENGTH	CRC
•	где SLAVE 03 START LENGTH CRC	код фунн адрес на количест	•	(1 байт); анных (2 байта, старший ных (2 байта, старший за	

Прибор ответит только в том случае, если START находится в диапазоне от 0000h до 0010h, а LENGTH – от 0001h до 0010h. При этом следует учесть следующее: START + LENGTH не должно превысить 0010h. Если START и (или) LENGTH находятся вне указанных диапазонов, прибор выдает **исключение** – «неправильный адрес данных».

Формат ответа для функции 3:

	SLAVE	03	BYTES	DATA	CRC
де					

SLAVE адрес ответившего прибора (1 байт); 03 код функции (1 байт);

BYTES количество передаваемых байт данных (1 байт); DATA... собственно, данные, предназначенные к обмену;

CRC контрольный циклический код.

Особенностью этой команды является то, что запрашиваются двухбайтовые данные (СЛОВА). Далее приведена таблица В.1, в которой сведены все возможные запрашиваемые данные с их адресами и длинами.

Изм.	Лист	№ докум.	Подпись	Дата

_	_			_	4
- 1	абл	1141	בו	ĸ	1
- 1	avı	IVIL	ıa	ப .	

Наименование данных	Адрес начала	Длина данных,
Паименование данных	данных, слова	СЛОВ
Код яркости; положение запятой на индикаторе	0000h	0001h
Верхнее значение диапазона показаний отсчетного устройства	0001h	0002h
Резерв	0003h	0002h
Резерв	0005h	0002h
Резерв	0007h	0002h
Резерв	0009h	0002h
Время измерения	000Bh	0002h
Резерв	000Dh	0002h

«Код яркости» и «положение запятой на индикаторе» – два функционально разных байта, сведенные в одно СЛОВО для уменьшения длины запрашиваемых данных. В слове старший байт – код яркости, младший - положение запятой на индикаторе и код знака. Код яркости - это число от 0 до 31, причем 0 – отсутствие свечения индикатора, 31 – максимальная яркость. В приборе используются следующие значения: 11 – градация 0; 15 – градация 1; 21 – градация 2; 31 – градация 3. Байт «положение запятой на индикаторе» определяет десятичный разряд индикатора, в котором отображается десятичная точка.

Положение запятой закодировано в младшем полубайте. Может принимать значения от 0x00 до 0x03, причем для значения 0x00 — запятая отображается во втором разряде, считая с левого; 0x03 — запятая в пятом, самом крайнем разряде.

«Верхнее значение диапазона показаний отсчетного устройства» — это значение, которое прибор покажет при подаче на его вход сигнала, соответствующего номинальному значению. Параметр представлен в двоично-десятичном не упакованном коде. Байт, передаваемый первым, соответствует более старшему разряду. Может принимать значения от 1000 до 9999. Положение десятичной запятой берется из поля «положение запятой на индикаторе» и имеет аналогичное трактование.

«Время измерения» – это время в секундах, прошедшее с момента изменения входного сигнала до момента получения нового результата измерения на отсчетном устройстве с нормированной погрешностью. Параметр представлен в двоично-десятичном не упакованном коде. Байт, передаваемый первым, соответствует более старшему разряду. Положение десятичной запятой – всегда во втором разряде. Параметр может принимать значения "01.00", "02.00", "03.00", "04.00".

Функция 4 предназначена для определения типа запрашиваемого прибора и получения кода, соответствующего поданному входному сигналу. Формат запроса для функции 4:

SLAVE	04	START	LENGTH	CRC		
где SLAVE 04 START	адр код адр	ес запрашиваемого при функции (1 байт); ес начала запрашиваем	бора (1 байт); ых данных (2 байта, стар	ший затем младший);		
LENGTH	кол	ичество запрашиваемых	к данных (2 байта, старши	ий затем младший);		
CRC	контрольный циклический код.					

Прибор ответит только в том случае, если START находится в диапазоне от 0000h до 0002h, а LENGTH – от 0001h до 0003h. При этом следует учесть следующее: START + LENGTH не должно превысить 0003h. Если START и (или) LENGTH находятся вне указанных диапазонов, прибор выдает исключение – «неправильный адрес данных».

Формат ответа для функции 4:

	SLAVE	04	BYTES	DATA	CRC
где SLAVE 04		ес ответивш функции (1 (его прибора байт):	(1 байт);	

Изм.	Лист	№ докум.	Подпись	Дата

BYTES количество передаваемых байт данных (1 байт); DATA... собственно, данные, предназначенные к обмену;

CRC контрольный циклический код.

Особенностью этой команды является то, что запрашиваются СЛОВА. Далее приведена таблица В.2, в которой сведены все возможные запрашиваемые данные с их адресами и длинами.

Таблица В.2

Наименование данных	Адрес начала	Длина данных, слов
	данных, слова	11 - 11- 7
Код прибора, участвующего в обмене	0000h	0001h
Код, соответствующий поданному входному сигналу Р	0001h	0001h
Код, соответствующий поданному входному сигналу Q	0002h	0001h

«Код прибора, участвующего в обмене» - это СЛОВО, в котором закодированы отличительные признаки выбранного прибора. Описание отдельных битов кода прибора сведено в таблицу В.З. Если соответствующий бит установлен, значит справедливо назначение этого бита для данного прибора.

Таблица В.3

Номер бита	Назначение
15	Преобразователь действующего значения тока или напряжения
14	Преобразователь частоты переменного тока
13	Преобразователь активной мощности
12	Преобразователь реактивной мощности
11	Реле установлено в приборе
10	Преобразователь постоянного тока или напряжения
9	Имеется аналоговый выход
8	Имеется встроенное отсчетное устройство
7	Резерв. Значение соответствует битам 0 – 6.
6-0	Если все "0", прибор находится в режиме «Программирование»,
0-0	если все "1", прибор находится в режиме «Измерение»

«Код, соответствующий поданному входному сигналу Р (Q)» – численное значение данного СЛОВА, пропорциональное величине сигнала, поданного на вход прибора. Может принимать значения в диапазоне от минус 7600 до плюс 7600. При этом значению 5000 соответствует номинальное значение входного сигнала. Данные представлены в двоичном дополнительном коде.

Функция 6 предназначена для дистанционного программирования режимов работы прибора. Формат запроса для функции 6:

SLA	/E 06	START	DATA	CRC
где SLA\ 06 STAF DATA CRC	код RT адр	рес запрашиваемого приб д функции (1 байт); рес регистра, участвующе нные, записываемые в ре птрольный циклический к	его в обмене (2 байта, ста егистр (2 байта, старший	•

Прибор ответит только в том случае, если START находится в диапазоне от 0000h до 001Fh. Если START находится вне указанного диапазона, прибор выдает исключение – «неправильный адрес данных». Формат ответа для функции 6:

SLAVE	06	START	DATA	CRC	
где SLAVE START DATA	адр		ора (1 байт); го в обмене (2 байта, ста гистр (2 байта, старший з		

Изм.	Лист	№ докум.	Подпись	Дата

CRC

контрольный циклический код.

Особенностью этой команды является то, что записываются БАЙТЫ, а не СЛОВА. При этом старшая часть поля DATA содержит признак сохранения всех возможных данных в энергонезависимой памяти прибора. Если в старшем байте поля DATA записан байт 0xFF, то его младший байт помещается в памяти прибора по адресу, заданному полем START. Если же старший и младший байты поля DATA совпадают, то происходит запись всех регистров в энергонезависимой памяти прибора, после чего прибор автоматически перезапускается с новыми значениями. Далее приведена таблица В.4, в которой сведены все возможные регистры с их адресами.

Таблица В.4

Адрес регистра в приборе	Назначение регистра	Длина регистра, байт
0000h	Код яркости	1
0001h	Положение запятой на экране	1
0002h	Верхнее значение показаний отсчетного устройства	4
0006h	Резерв	4
000Ah	Резерв	4
000Eh	Резерв	4
0012h	Резерв	4
0016h	Время измерения	4
001Ah	Резерв	4
001Eh	Код скорости обмена	1
001Fh	Сетевой номер	1

Назначение первых семи регистров такое же, как и в функции 3. Два последних позволяют определить скорость обмена и сетевой номер при работе в сети.

Возможные значения кода скорости: 0-1200 бод; 1-2400 бод; 2-4800 бод; 3-9600 бод, 4-19200 бод, 5-28800 бод, 6-38400 бод, 7-57600 бод, 8-115200 бод. Возможные значения сетевого номера от 1 до 255. При выпуске из производства установлена скорость 9600. Сетевой номер 255, если иное не оговорено при заказе.

Данная функция поддерживает широкополосную посылку, т.е. если в поле SLAVE задан адрес 0, все приборы примут эту команду к исполнению.

Исключения

Если во время работы приходит неправильная команда или обнаруживается ошибка в поле CRC, прибор не дает ответа.

Если во время работы приходит команда с неправильными данными или неправильным адресом, то прибор отвечает особым образом.

Формат ответа исключения:

SLAVE 0x80 CMD	02	CRC
----------------	----	-----

где

SLAVE адрес запрашиваемого прибора (1 байт);

0x80|CMD код функции, которая обнаружила ошибку с установленным старшим битом;

02 код ошибки «Неправильный адрес или данные»;

CRC контрольный циклический код.

Изм.	Лист	№ докум.	Подпись	Дата

Лист регистрации изменений

Изм.	Номера листов (страниц)				Всего листов	Nº	Входящий № сопроводи-	Подп.	Дата
	изме- ненных	заменен- ных	НОВЫХ	аннулиро- ванных	(страниц) в докум.	докум.	тельного докум. и дата		дата
	ПСППЫХ	ПЫХ		Barribix			-		

Изм.	Лист	№ докум.	Подпись	Дата